Results on Secant Varieties Leading to a Geometric Flip Construction

نویسنده

  • Peter Vermeire
چکیده

We study the relationship between the equations defining a projective variety and properties of its secant varieties. In particular, we use information about the syzygies among the defining equations to derive smoothness and normality statements about SecX and also to obtain information about linear systems on the blow up of projective space along a variety X. We use these results to geometrically construct, for varieties of arbitrary dimension, a flip first described in the case of curves by M. Thaddeus via Geometric Invariant Theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on Secant Varieties Leading to a Geometric Flip Construction

We study the relationship between the equations defining a projective variety and properties of its secant varieties. In particular, we use information about the syzygies among the defining equations to derive smoothness and normality statements about SecX and also to obtain information about linear systems on the blow up of projective space along a variety X. We use these results to geometrica...

متن کامل

Secant Varieties and Birational Geometry

We show how to use information about the equations defining secant varieties to smooth projective varieties in order to construct a natural collection of birational transformations. These were first constructed as flips in the case of curves by M. Thaddeus via Geometric Invariant Theory, and the first flip in the sequence was constructed by the author for varieties of arbitrary dimension in an ...

متن کامل

On the third secant variety

We determine normal forms and ranks of tensors of border rank at most three. We present a differential-geometric analysis of limits of secant planes in a more general context. In particular there are at most four types of points on limiting trisecant planes for cominuscule varieties such as Grassmannians. We also show that the singular locus of the secant varieties σr(Seg(P × P × P)) has codime...

متن کامل

And Computational Algebra

We explore the geometric notion of prolongations in the setting of computational algebra, extending results of Landsberg and Manivel which relate prolongations to equations for secant varieties. We also develop methods for computing prolongations which are combinatorial in nature. As an application, we use prolongations to derive a new family of secant equations for the binary symmetric model i...

متن کامل

N ov 2 00 6 PROLONGATIONS AND COMPUTATIONAL ALGEBRA

We explore the geometric notion of prolongations in the setting of computational algebra, extending results of Landsberg and Manivel which relate prolongations to equations for secant varieties. We also develop methods for computing prolongations which are combinatorial in nature. As an application, we use prolongations to derive a new family of secant equations for the binary symmetric model i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008